资源类型

期刊论文 866

年份

2023 63

2022 60

2021 61

2020 67

2019 68

2018 54

2017 50

2016 33

2015 35

2014 28

2013 31

2012 26

2011 29

2010 46

2009 33

2008 31

2007 36

2006 19

2005 20

2004 9

展开 ︾

关键词

动力特性 5

增材制造 4

建模 4

人工智能 3

动力响应 3

动力学 3

深度学习 3

SWAT模型 2

代理模型 2

信息物理系统 2

力学性能 2

动态管理 2

动态规划 2

建模仿真 2

扬矿管 2

数值模拟 2

新能源汽车 2

机器学习 2

模态 2

展开 ︾

检索范围:

排序: 展示方式:

Extended model predictive control scheme for smooth path following of autonomous vehicles

《机械工程前沿(英文)》 2022年 第17卷 第1期   页码 4-4 doi: 10.1007/s11465-021-0660-4

摘要: This paper presents an extended model predictive control (MPC) scheme for implementing optimal path following of autonomous vehicles, which has multiple constraints and an integrated model of vehicle and road dynamics. Road curvature and inclination factors are used in the construction of the vehicle dynamic model to describe its lateral and roll dynamics accurately. Sideslip, rollover, and vehicle envelopes are used as multiple constraints in the MPC controller formulation. Then, an extended MPC method solved by differential evolution optimization algorithm is proposed to realize optimal smooth path following based on driving path features. Finally, simulation and real experiments are carried out to evaluate the feasibility and the effectiveness of the extended MPC scheme. Results indicate that the proposed method can obtain the smooth transition to follow the optimal drivable path and satisfy the lateral dynamic stability and environmental constraints, which can improve the path following quality for better ride comfort and road availability of autonomous vehicles.

关键词: autonomous vehicles     vehicle dynamic modeling     model predictive control     path following     optimization algorithm    

V/STOL飞机建模与仿真分析

范勇,朱纪洪,孟宪宇,刘凯,杨喜立

《中国工程科学》 2011年 第13卷 第3期   页码 107-112

摘要:

以原理验证机为背景,建立了无尾布局垂直/短距起降飞行器的数学模型,并通过智能自适应方法对其进行了闭环飞行控制,控制量通过控制分配合理的协调各操纵面,最后在MATLAB7.0/Simulink环境下通过数值仿真进行了验证。结果显示,该平台具备垂直/短距起降能力和较好的飞行性能。

关键词: 无尾布局飞行器     垂直/短距起降飞行器(V/STOL)     动力学建模     飞行控制    

水波滑翔器动力学建模 Article

Chun-lin ZHOU, Bo-xing WANG, Hong-xiang ZHOU, Jing-lan LI, Rong XIONG

《信息与电子工程前沿(英文)》 2017年 第18卷 第9期   页码 1295-1304 doi: 10.1631/FITEE.1700294

摘要: 水波滑翔器是一种能够利用海面波浪起伏获得前进动力的海面移动装置,本文研究一种该装置的动力学建模方法。水波滑翔器由水面浮子和水下滑翔装置两部分构成,可视为一个双质点系统。本文采用Kane方程建立该系统的动力学模型,并提出一种水池试验装置来测试模型的有效性,得到了滑翔器在不同海况条件下的速度性能。同时,该模型还可用于优化滑翔器的结构参数。本文提出的水波滑翔器动力学模型具有解析形式,是滑翔器运动控制得以实现的前提,也为滑翔器离线运动规划和装置结构优化提供了重要基础。

关键词: 波浪能驱动;动力学建模;海面移动载体;水波滑翔器    

Typical diseases of a long-span concrete-filled steel tubular arch bridge and their effects on vehicle-induceddynamic response

Jianling HOU, Weibing XU, Yanjiang CHEN, Kaida ZHANG, Hang SUN, Yan LI

《结构与土木工程前沿(英文)》 2020年 第14卷 第4期   页码 867-887 doi: 10.1007/s11709-020-0649-9

摘要: A long-span concrete-filled steel tubular (CFST) arch bridge suffers severe vehicle-induced dynamic responses during its service life. However, few quantitative studies have been reported on the typical diseases suffered by such bridges and their effects on vehicle-induced dynamic response. Thus, a series of field tests and theoretical analyses were conducted to study the effects of typical diseases on the vehicle-induced dynamic response of a typical CFST arch bridge. The results show that a support void results in a height difference between both sides of the expansion joint, thus increasing the effect of vehicle impact on the main girder and suspenders. The impact factor of the displacement response of the main girder exceeds the design value. The variation of the suspender force is significant, and the diseases are found to have a greater effect on a shorter suspender. The theoretical analysis results also show that the support void causes an obvious longitudinal displacement of the main girder that is almost as large as the vertical displacement. The support void can also cause significant changes in the vehicle-induced acceleration response, particularly when the supports and steel box girder continue to collide with each other under the vehicle load.

关键词: long-span arch bridge     expansion joint disease     vehicle-bridge coupling vibration     dynamic response    

PRESS-based EFOR algorithm for the dynamic parametrical modeling of nonlinear MDOF systems

Haopeng LIU, Yunpeng ZHU, Zhong LUO, Qingkai HAN

《机械工程前沿(英文)》 2018年 第13卷 第3期   页码 390-400 doi: 10.1007/s11465-017-0459-5

摘要:

In response to the identification problem concerning multi-degree of freedom (MDOF) nonlinear systems, this study presents the extended forward orthogonal regression (EFOR) based on predicted residual sums of squares (PRESS) to construct a nonlinear dynamic parametrical model. The proposed parametrical model is based on the non-linear autoregressive with exogenous inputs (NARX) model and aims to explicitly reveal the physical design parameters of the system. The PRESS-based EFOR algorithm is proposed to identify such a model for MDOF systems. By using the algorithm, we built a common-structured model based on the fundamental concept of evaluating its generalization capability through cross-validation. The resulting model aims to prevent over-fitting with poor generalization performance caused by the average error reduction ratio (AERR)-based EFOR algorithm. Then, a functional relationship is established between the coefficients of the terms and the design parameters of the unified model. Moreover, a 5-DOF nonlinear system is taken as a case to illustrate the modeling of the proposed algorithm. Finally, a dynamic parametrical model of a cantilever beam is constructed from experimental data. Results indicate that the dynamic parametrical model of nonlinear systems, which depends on the PRESS-based EFOR, can accurately predict the output response, thus providing a theoretical basis for the optimal design of modeling methods for MDOF nonlinear systems.

关键词: MDOF     dynamic parametrical model     NARX model     PRESS-based EFOR     cantilever beam    

Mesh relationship modeling and dynamic characteristic analysis of external spur gears with gear wear

《机械工程前沿(英文)》 2022年 第17卷 第1期   页码 9-9 doi: 10.1007/s11465-021-0665-z

摘要: Gear wear is one of the most common gear failures, which changes the mesh relationship of normal gear. A new mesh relationship caused by gear wear affects meshing excitations, such as mesh stiffness and transmission error, and further increases vibration and noise level. This paper aims to establish the model of mesh relationship and reveal the vibration characteristics of external spur gears with gear wear. A geometric model for a new mesh relationship with gear wear is proposed, which is utilized to evaluate the influence of gear wear on mesh stiffness and unloaded static transmission error (USTE). Based on the mesh stiffness and USTE considering gear wear, a gear dynamic model is established, and the vibration characteristics of gear wear are numerically studied. Comparison with the experimental results verifies the proposed dynamic model based on the new mesh relationship. The numerical and experimental results indicate that gear wear does not change the structure of the spectrum, but it alters the amplitude of the meshing frequencies and their sidebands. Several condition indicators, such as root-mean-square, kurtosis, and first-order meshing frequency amplitude, can be regarded as important bases for judging gear wear state.

关键词: gear wear     mesh relationship     mesh stiffness     transmission error     vibration characteristics    

Coordinated shift control of nonsynchronizer transmission for electric vehicles based on dynamic tooth

《机械工程前沿(英文)》 2021年 第16卷 第4期   页码 887-900 doi: 10.1007/s11465-021-0653-3

摘要: Multispeed transmissions can enhance the dynamics and economic performance of electric vehicles (EVs), but the coordinated control of the drive motor and gear shift mechanism during gear shifting is still a difficult challenge because gear shifting may cause discomfort to the occupants. To improve the swiftness of gear shifting, this paper proposes a coordinated shift control method based on the dynamic tooth alignment (DTA) algorithm for nonsynchronizer automated mechanical transmissions (NSAMTs) of EVs. After the speed difference between the sleeve (SL) and target dog gear is reduced to a certain value by speed synchronization, angle synchronization is adopted to synchronize the SL quickly to the target tooth slot’s angular position predicted by the DTA. A two-speed planetary NSAMT is taken as an example to carry out comparative simulations and bench experiments. Results show that gear shifting duration and maximum jerk are reduced under the shift control with the proposed method, which proves the effectiveness of the proposed coordinated shift control method with DTA.

关键词: electric vehicle     nonsynchronizer automated mechanical transmission (NSAMT)     planetary gear     coordinated shift control     dynamic tooth alignment    

Special issue: Wind turbine dynamic modeling, condition monitoring and diagnosis

Zheng YOU, Jinji GAO, Fulei CHU, Tielin SHI

《机械工程前沿(英文)》 2017年 第12卷 第3期   页码 279-280 doi: 10.1007/s11465-017-0476-4

Statics of levitated vehicle model with hybrid magnets

Desheng LI, Zhiyuan LU, Tianwu DONG

《机械工程前沿(英文)》 2009年 第4卷 第1期   页码 35-39 doi: 10.1007/s11465-009-0002-4

摘要: By studying the special characteristics of permanent and electronic magnets, a levitated vehicle model with hybrid magnets is established. The mathematical model of the vehicle is built based on its dynamics equation by studying its machine structure and working principle. Based on the model, the basic characteristics and the effect between the excluding forces from permanent magnets in three different spatial directions are analyzed, statics characteristics of the interference forces in three different spatial directions are studied, and self-adjusting equilibrium characteristics and stabilization are analyzed. Based on the structure above, the vehicle can levitate steadily by control system adjustment.

关键词: magnetic levitation     permanent magnet     modeling     equilibrium    

Dynamic modeling of hydrostatic guideway considering compressibility and inertia effect

Yikang DU,Kuanmin MAO,Yaming ZHU,Fengyun WANG,Xiaobo MAO,Bin LI

《机械工程前沿(英文)》 2015年 第10卷 第1期   页码 78-88 doi: 10.1007/s11465-015-0331-4

摘要:

Hydrostatic guideways are used as an alternative to contact bearings due to high stiffness and high damping in heavy machine tools. To improve the dynamic characteristic of bearing structure, the dynamic modeling of the hydrostatic guidway should be accurately known. This paper presents a “mass-spring-Maxwell” model considering the effects of inertia, squeeze, compressibility and static bearing. To determine the dynamic model coefficients, numerical simulation of different cases between displacement and dynamic force of oil film are performed with fluent code. Simulation results show that hydrostatic guidway can be taken as a linear system when it is subjected to a small oscillation amplitude. Based on a dynamic model and numerical simulation, every dynamic model’s parameters are calculated by the Levenberg-Marquardt algorithm. Identification results show that “mass-spring-damper” model is the most appropriate dynamic model of the hydrostatic guidway. This paper provides a reference and preparation for the analysis of the dynamic model of the similar hydrostatic bearings.

关键词: hydrostatic guidway     dynamic model     dynamic mesh technique     Levenberg-Marquardt     mass-spring-damper model    

动态蚁群算法在带时间窗车辆路径问题中的应用

刘云忠,宣慧玉

《中国工程科学》 2005年 第7卷 第12期   页码 35-40

摘要:

蚁群算法是近年来新出现的一种随机型搜索寻优算法。自从在旅行商等著名问题中得到富有成效的应用之后,已引起人们越来越多的关注和重视。将这种新型的生物优化思想扩展到物流管理中的带时间窗车辆路径问题,设计了一种动态蚁群算法,从数值计算上探索了这种新型蚁群算法的优化能力,获得了满意的效果。

关键词: 蚁群算法     带时间窗车辆路径问题     物流管理     动态    

Integration of molecular dynamic simulation and free volume theory for modeling membrane VOC/gas separation

Bo Chen, Yan Dai, Xuehua Ruan, Yuan Xi, Gaohong He

《化学科学与工程前沿(英文)》 2018年 第12卷 第2期   页码 296-305 doi: 10.1007/s11705-018-1701-3

摘要: Gas membrane separation process is highly unpredictable due to interacting non-ideal factors, such as composition/pressure-dependent permeabilities and real gas behavior. Although molecular dynamic (MD) simulation can mimic those complex effects, it cannot precisely predict bulk properties due to scale limitations of calculation algorithm. This work proposes a method for modeling a membrane separation process for volatile organic compounds by combining the MD simulation with the free volume theory. This method can avoid the scale-up problems of the MD method and accurately simulate the performance of membranes. Small scale MD simulation and pure gas permeation data are employed to correlate pressure-irrelevant parameters for the free volume theory; by this approach, the microscopic effects can be directly linked to bulk properties (non-ideal permeability), instead of being fitted by a statistical approach. A lab-scale hollow fiber membrane module was prepared for the model validation and evaluation. The comparison of model predictions with experimental results shows that the deviations of product purity are reduced from 10% to less than 1%, and the deviations of the permeate and residue flow rates are significantly reduced from 40% to 4%, indicating the reliability of the model. The proposed method provides an efficient tool for process engineering to simulate the membrane recovery process.

关键词: membrane vapor separation     membrane process modeling     process engineering     free volume theory     volatile organic compound    

Finite element modeling of cable sliding and its effect on dynamic response of cable-supported truss

Yujie YU, Zhihua CHEN, Renzhang YAN

《结构与土木工程前沿(英文)》 2019年 第13卷 第5期   页码 1227-1242 doi: 10.1007/s11709-019-0551-5

摘要: The cable system of cable-supported structures usually bears high tension forces, and clip joints may fail to resist cable sliding in cases of earthquake excitations or sudden cable breaks. A analytical method that considers the dynamic cable sliding effect is proposed in this paper. Cable sliding behaviors and the resultant dynamic responses are solved by combining the vector form intrinsic finite element framework with cable force redistribution calculations that consider joint frictions. The cable sliding effect and the frictional tension loss are solved with the original length method that uses cable length and the original length relations. Then, the balanced tension distributions are calculated after frictional sliding. The proposed analytical method is achieved within MATLAB and applied to simulate the dynamic response of a cable-supported plane truss under seismic excitation and sudden cable break. During seismic excitations, the cable sliding behavior in the cable-supported truss have an averaging effect on the oscillation magnitudes, but it also magnifies the internal force response in the upper truss structure. The slidable cable joints can greatly reduce the ability of a cable system to resist sudden cable breaks, while strong friction resistances at the cable-strut joints can help retain internal forces.

关键词: sliding cable     explicit solution framework     original length method     seismic response     cable rupture    

Modeling of dynamic response of poroelastic soil layers under wave loading

Mehmet Bar?? Can üLKER

《结构与土木工程前沿(英文)》 2014年 第8卷 第1期   页码 1-18 doi: 10.1007/s11709-014-0233-2

摘要: In this paper, the dynamic response of saturated and layered soils under harmonic waves is modeled using the finite element method. The numerical results are then verified by corresponding analytical solutions which are also developed by the author. The equations governing the dynamics of porous media are written in their fully dynamic form and possible simplifications are introduced based on the presence of inertial terms associated with solid and fluid phases. The response variations are presented in terms of pore water pressure and shear stress distributions within the layers. It is determined that a set of non-dimensional parameters and their respective ratios as a result of layering play a major role in the dynamic response.

关键词: dynamic response of soils     coupled flow-deformation     finite elements     analytical solution     harmonic waves    

of carbon dioxide photoreduction process in a laboratory-scale photoreactor by computational fluid dynamicand reaction kinetic modeling

《化学科学与工程前沿(英文)》 2022年 第16卷 第7期   页码 1149-1163 doi: 10.1007/s11705-021-2096-0

摘要: The production of solar fuels via the photoreduction of carbon dioxide to methane by titanium oxide is a promising process to control greenhouse gas emissions and provide alternative renewable fuels. Although several reaction mechanisms have been proposed, the detailed steps are still ambiguous, and the limiting factors are not well defined. To improve our understanding of the mechanisms of carbon dioxide photoreduction, a multiphysics model was developed using COMSOL. The novelty of this work is the computational fluid dynamic model combined with the novel carbon dioxide photoreduction intrinsic reaction kinetic model, which was built based on three-steps, namely gas adsorption, surface reactions and desorption, while the ultraviolet light intensity distribution was simulated by the Gaussian distribution model and Beer-Lambert model. The carbon dioxide photoreduction process conducted in a laboratory-scale reactor under different carbon dioxide and water moisture partial pressures was then modeled based on the intrinsic kinetic model. It was found that the simulation results for methane, carbon monoxide and hydrogen yield match the experiments in the concentration range of 10−4 mol·m–3 at the low carbon dioxide and water moisture partial pressure. Finally, the factors of adsorption site concentration, adsorption equilibrium constant, ultraviolet light intensity and temperature were evaluated.

关键词: carbon dioxide photoreduction     computational fluid dynamic simulation     kinetic model     Langmuir adsorption    

标题 作者 时间 类型 操作

Extended model predictive control scheme for smooth path following of autonomous vehicles

期刊论文

V/STOL飞机建模与仿真分析

范勇,朱纪洪,孟宪宇,刘凯,杨喜立

期刊论文

水波滑翔器动力学建模

Chun-lin ZHOU, Bo-xing WANG, Hong-xiang ZHOU, Jing-lan LI, Rong XIONG

期刊论文

Typical diseases of a long-span concrete-filled steel tubular arch bridge and their effects on vehicle-induceddynamic response

Jianling HOU, Weibing XU, Yanjiang CHEN, Kaida ZHANG, Hang SUN, Yan LI

期刊论文

PRESS-based EFOR algorithm for the dynamic parametrical modeling of nonlinear MDOF systems

Haopeng LIU, Yunpeng ZHU, Zhong LUO, Qingkai HAN

期刊论文

Mesh relationship modeling and dynamic characteristic analysis of external spur gears with gear wear

期刊论文

Coordinated shift control of nonsynchronizer transmission for electric vehicles based on dynamic tooth

期刊论文

Special issue: Wind turbine dynamic modeling, condition monitoring and diagnosis

Zheng YOU, Jinji GAO, Fulei CHU, Tielin SHI

期刊论文

Statics of levitated vehicle model with hybrid magnets

Desheng LI, Zhiyuan LU, Tianwu DONG

期刊论文

Dynamic modeling of hydrostatic guideway considering compressibility and inertia effect

Yikang DU,Kuanmin MAO,Yaming ZHU,Fengyun WANG,Xiaobo MAO,Bin LI

期刊论文

动态蚁群算法在带时间窗车辆路径问题中的应用

刘云忠,宣慧玉

期刊论文

Integration of molecular dynamic simulation and free volume theory for modeling membrane VOC/gas separation

Bo Chen, Yan Dai, Xuehua Ruan, Yuan Xi, Gaohong He

期刊论文

Finite element modeling of cable sliding and its effect on dynamic response of cable-supported truss

Yujie YU, Zhihua CHEN, Renzhang YAN

期刊论文

Modeling of dynamic response of poroelastic soil layers under wave loading

Mehmet Bar?? Can üLKER

期刊论文

of carbon dioxide photoreduction process in a laboratory-scale photoreactor by computational fluid dynamicand reaction kinetic modeling

期刊论文